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S1 Simulation Methods

The simulations were done in COMSOL MultiPhysics, which uses the finite element method, in the

Wave Optics module using frequency domain and eigenfrequency studies. Only a single resonator

is modeled with the infinite metasurface simulated via Floquet boundaries and infinite space above

and below the metasurface by Perfectly Matched Layers. Note that due to the numerical limitations
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of the simulation method the infinite quality factors (Q) predicted for BICs do not appear, so we

take any mode with Q > 103 in an eigenfrequency study to be worthy of further analysis.

The simulations take into account the material dispersion for AlGaAs over the entire wave-

length range considered. We also use an undepleted SFG approximation as this is a condition for

quantum-classical correspondence, which allows us to predict the photon-pair rate and construct

a wavefunction for SPDC. The signal and idler input fields were generated by as plane waves at

specified polar and azimuthal angles. The linear response of the metasurface to the signal and idler

beams were calculated separately and the fields of both inside the resonator were used to generate

an external current density in a separate SFG simulation. This external current density is shaped

by the quadratic nonlinear tensor of AlGaAs and the crystal orientation.

To calculate the farfield SFG power the SFG E and H fields are sampled at a plane more than

one wavelength from the metasurface. By taking the Fourier transform of these fields we are able

to calculate the farfield Poynting vector for each diffraction order. We used a value of second-

order nonlinear susceptibility for AlGaAs material as χ(2)
i,j,k = 200pm/V for i 6= j 6= k.35 Our

simulations showed that the ratio of the peak SFG power to the peak intensity inside the resonator

is relatively constant and so we are able to use the peak signal intensity as a proxy for the farfield

SFG power in our initial analyses (See Sec. S4). This greatly reduces the simulation time for initial

studies.

S2 Ghost Oligomers and Symmetry

Because we are interested in nonlinear generation we need to maximize the amount of nonlinear

material in the metasurface. We therefore use holes in the material as well as the lattice to deter-

mine the group of the metasurface. Because the holes form negative oligomers we have dubbed
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them “Ghost Oligomers” since these “Ghosts” drive the behavior of the “body” material. Taking

this analogy further we might dub stick and ball meta-atoms “Platonic” since the ghost (stick) is

separate from the body (ball), while ghost oligomers would be “Aristotelian” since the ghost and

body are inherently inseparable.

With this method we are able to produce all 9 point groups36 of a 2D repeating pattern, which

determines the basis for the eigenmodes that will form in the metasurface. In Fig. S1 for example

we see some of the possible ghost oligomer patterns for each of the 9 point groups. Other possi-

bilities are allowed, such as a simple triangular lattice of holes which also has a D6h symmetry.

Although this different pattern will have the same basis as that shown in Fig. S1, the different

arrangement of the low refractive index air region will mean that the eigenmodes are at different

frequencies in the two different patterns. Also, theD6h pattern shown in Fig. S1 has an extra tuning

parameter in the gap between the double holes, which allows for greater flexibility in tuning the

eigenmodes.

Each group will have its own distinct properties for the dispersion relations which will produce

pair rate distributions in k-space characteristic of the group. For example, in this study we only

calculated one quadrant of k-space as the metasurface has D2h symmetry which includes x and y

reflection axes. But no cyclic group has reflection axes and hence one would have to calculate all

four quadrants to characterize a C1h symmetric metasurface. This is therefore a rich field for future

exploration.

S3 Crystal Orientation

The efficiency of nonlinear frequency conversion in SFG and SPDC processes depends on the

crystal structure and orientation. In this paper we study AlGaAs, which has a Zincblende (4̄3m)

3



Fig S1 There are nine point groups for a 2D repeating pattern, all of which can be described with ghost oligomers.
The purple designs have a square lattice, while the pink ones have a rhombic lattice.

crystal structure. It has been shown that for Mie modes Zinkblende with (100) orientation has zero

SHG emission in the zeroth diffraction order, while both (110) and (111) do have zeroth order

emission.37 It has also been shown that in-plane orientation of the crystal (i.e., in the plane of the

metasurface) affects nonlinear emission.38

In our simulations the signal and idler are angled to achieve normal emission for the SFG, but

at the SFG wavelength there are multiple diffraction orders and so, for convenience, we need a

crystal orientation that will give strong emission in the zeroth diffraction order. Our simulations

showed that when a BIC is excited every orientation has comparable zeroth order SFG emission.

We therefore chose (111) orientation as that also has a strong zeroth emission in the off-BIC illumi-

nation and will therefore give a better measure of the enhancement due to the BIC. Our simulations

were for SFG from BIC α with gap = 52 nm. The SFG wavelength was set to the degenerate (at

the BIC) 774.245 nm and the signal and idler had normal incidence to the metasurface.
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Fig S2 Farfield SFG efficiency from a (111) oriented AlGaAs crystal by diffraction order when the signal and idler
both have vertical polarization. We consider different crystal rotations in the x-y plane relative to the meta-atom as
illustrated by diagrams at the top: (a,b) (0◦), (c,d) 45◦, (e,f) 90◦. The later orientation used in this paper is highlighted
by a gray background. (a,c,e) SFG efficiency at different diffraction orders (mx,my), at the wavelengths corresponding
to maximum values in the respective (b,d,f) plots. (b,d,f) The dependence of SFG efficiency in the zeroth order and all
orders as indicated by labels on the signal wavelength λs for a fixed sum-frequency wavelength λp = 774.245 nm.

Because the resonator being studied does not have π/2 rotation symmetry in the x-y plane, the

angle of the crystal in this plane will also affect the SFG farfield power. We therefore simulated

rotations of the crystal in the x-y plane of 0◦, 45◦ and 90◦ - see the results in Fig. S2 where the

diagrams at the top show the orientation of the crystal with respect to the meta-atom. The best

results were for an x-y orientation of 90◦, giving both the highest total efficiency as well as the

highest proportion in the zeroth diffraction order as shown in Figs. S2(e) and (f).

S4 SPDC Efficiency

In our analysis we found that the calculated SPDC rate is approximately proportional to the inten-

sity of the signal and idler fields inside the resonator from our SFG simulations. The justification
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for this can be seen in Fig. S3. There are a total of 8 combinations of pump, signal and idler polar-

ization, but the other 3, not shown here or in the letter, are of the same form as those shown. In our

work the value for Ξ0 is the ratio of the farfield SFG Poynting vector, corresponding to horizontal

or vertical SPDC pump polarization, divided by the product of the maximum intensity of the signal

and idler fields inside the resonator. These ratios vary with θ and φ so we adopted conservative

values. The calculated values are shown in table S1.

(a) (b)

(c) (d)

|HH⟩V pump |HV⟩V pump

|VH⟩V pump |VV⟩V pump

Fig S3 Comparison between the product of the maximum intensity of the signal and idler in the resonator (dashed
lines) and the calculated SPDC rate (solid lines) for BIC α with gap = 52nm, φ = 79◦ and θs = 0.2◦ for the signal,
opposite angle for the idler, and vertically polarized pump. (a) |HH〉. (b) |HV 〉. (c) |V H〉. (d) |V V 〉.
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Table S1 Ratio of the horizontally and vertically polarized components of the SFG farfield intensity at the zeroth
diffraction order to the product of maximum signal and idler intensity inside the resonator, in units of (W

/
m2 )−1.

‘Degenerate’ and ‘Non-degenerate’ refers to the wavelengths of the signal and idler and signifies the single and double
BIC cases respectively.

Degenerate Non-degenerate
Polariz. signal & idler Horizontal Vertical Horizontal Vertical

|HH〉 2× 10−21 2× 10−21 1× 10−20 1× 10−22

|HV 〉 3× 10−21 3× 10−23 2× 10−20 2× 10−24

|V H〉 3× 10−21 2× 10−21 1× 10−20 1× 10−22

|V V 〉 3× 10−21 3× 10−23 2× 10−20 2× 10−24

S5 Lorentzian Fitting

To properly characterize the nonlinear generation we need to determine the k-space dependency

of each of the parameters determining the BIC lineshape. We therefore ran linear simulations for

several angles of the polar (θ) and azimuthal (φ) angles as well as the polarization. We then fitted

parameters to the lineshape of the maximum intensity in the resonators and then fitted polynomials

in k-space to each of these parameters.

In a resonant structure the farfield SFG spectrum should have a Lorentzian lineshape39 as:

γ

(ω − ωBIC)2 + γ2
, (S1)

where ω is the frequency, ωBIC the peak frequency and γ is half of the full width at half maximum.

We fitted the following Lorentzian function to our simulation results:

L(ω) = c1

(
γ

(ω − ωBIC)2 + γ2
+ c2

)
, (S2)

where the background of c1× c2 is not used in subsequent calculations, since it is the enhancement

that is significant.
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The accuracy of the fitting is characterized by a normalised residual sum of squares defined as

R =

∑
(dij − f(xi, yj))

2∑
d2ij

,

where f(xi, yj) is the normalized fitted function and dij are the data values normalized to the range

0− 1. The data is normalized to ensure that the value of R is not affected by the magnitude of the

dij . Note that the normalized data is only used in the calculation of R and all other fitting is done

with the actual values of the data.

Characteristic examples of the fitted curves L(ω) are presented in Figs. S4(a) & (b), which

show fits for BIC α at gap = 175 nm, φ = 75◦ and θ = 0.1◦, 0.45◦ respectively with horizontal

polarization. In both cases R = 8 × 10−8. The only cases in which the intensity profile was not

Lorentzian was for the six data points (out of 140) of BIC α where φ = 0◦, θ ≥ 0.2◦ and the

polarization is horizontal, where typically R = 10−4. The enhancement of the field is very low in

these cases and so they are not important to our final results for the enhancement of SPDC.

1554.75 1554.76 1554.77 1554.78
Wavelength (nm)

1014

1016

1018

data
fit

1554.75 1554.76 1554.77 1554.78
Wavelength (nm)

1016

1018 data
fit

(b)(a)
Fig S4 Lorentzian fitting to simulated maximum intensity in the resonator for BIC α at gap = 175nm with horizontal
polarization and φ = 75◦. (a) θ = 0.1◦, (b) θ = 0.45◦.

We then fitted polynomials to the fitted values for γ, ωBIC and c1 so that we will have functions
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of γ(k), ωBIC(k) and c1(k). In all of the following results the superscript ‘H’ indicates results for

horizontal polarization and ‘V’ for vertical polarization.

S5.1 BIC α, gap=52 nm

For γ we obtained RH = 0.0168 [Fig. S5(a)], RV = 0.002 [Fig. S5(d)] and parabolic fitted

functions as expected:

γH(kx, ky) = 1.26× 103 GHzµm2 k2x − 79 GHzµm2 k2y + 1.6× 10−2 GHz,

γV (kx, ky) = 1.45× 103 GHzµm2 k2x − 48 GHzµm2 k2y + 2.8× 10−3 GHz.

For ωBIC we obtained RH = 0.0088 [Fig. S5(b)], RV = 8.96 × 10−6 [Fig. S5(e)] and with

(c) (e)(a)

(d) (f)(b)

Fig S5 Lorentzian fitting to simulation results for BIC αwith gap = 52 nm. The red dots are values fitted to individual
simulation results and the surface is the fitted function. (a) γH , (b) γV , (c) ωH

BIC , (d) ωV
BIC , (e) cH1 , (f) cV1 .
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fitted functions of

ωHBIC(kx, ky) = −1.47× 103 GHzµm2 k2x − 2.45× 103 GHzµm2 k2y + 1.9356× 105 GHz,

ωVBIC(kx, ky) = −0.93× 103 GHzµm2 k2x − 2.57× 103 GHzµm2 k2y + 1.9356× 105 GHz.

(S3)

The fitted value for c1 was found to be highly dependent on θ and φ, with RH = 0.0079

[Fig. S5(c)], RV = 0.0478 [Fig. S5(f)] and fitted functions of

cH1 (θ, φ) =


(−1.0101− 0.1005 |θ|) gH(φ) θ ≥ 0.1◦

(10 θ)2 gH(φ) θ < 0.1◦

cV1 (θ, φ) =


(0.998 + 0.0197 |θ|) gV (φ) θ ≥ 0.1◦

(10 θ)2 gV (φ) θ < 0.1◦

(S4)

where

gH(φ) = 1.22× 1010 φ′
4 − 1.98× 1013 φ′

2
+ 9.77× 1015,

gV (φs) = −1.19× 1010 φ′
4

+ 1.71× 1013 φ′
2

+ 6.48× 1017,

and to ensure periodicity we have

φ′ =


π − φ (mod π) φ (mod π) > π/2 ,

φ (mod π) φ (mod π) ≤ π/2 .

If the polarization is set to whichever value gives the greatest intensity in the resonator then
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c1(k) is constant as expected from Eq. (S1).

S5.2 BIC α, gap=175 nm

For γ we obtained RH = 0.008 (Fig. S6(a)), RV = 0.0011 (Fig. S6(d)) and parabolic fitted

functions as expected:

γH(kx, ky) = 685 GHzµm2 k2x − 17 GHzµm2 k2y + 1.5× 10−2 GHz,

γV (kx, ky) = 703 GHzµm2 k2x + 0.04 GHzµm2 k2y + 5× 10−3 GHz.

The fitting is poor along ky = 0, but the enhancement of the SFG is weak here and so this does not

affect our results.

(c) (e)(a)

(d) (f)(b)

Fig S6 Lorentzian fitting to simulation results for BIC α with gap = 175 nm. The red dots are values fitted to
individual simulation results and the surface is the fitted function. (a) γH , (b) γV , (c) ωH

BIC , (d) ωV
BIC , (e) cH1 , (f) cV1 .
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For ωBIC we obtained RH = 1.9 × 10−3 (Fig. S6(b)), RV = 2.9 × 10−7 (Fig. S6(e)) and with

fitted functions of

ωHBIC(kx, ky) = −1.01× 103 GHzµm2 k2x − 2.86× 103 GHzµm2 k2y + 1.9282× 105 GHz,

ωVBIC(kx, ky) = −1.17× 103 GHzµm2 k2x − 2.84× 103 GHzµm2 k2y + 1.9282× 105 GHz.

(S5)

For cH1 we get RH = 2.3 [Fig. S6(c)] which, on the face of it, is an unacceptable figure, but

which actually demonstrates both the difficulty of automatically fitting such a complicated function

and also that the true measure of the fitted polynomials is whether or not they match the simulated

data points. The problem we encounter here is that we are not fitting polynomials to data points,

but rather we are fitting polynomials to data that is itself fitted to data points. That is, the first fitting

creates the values of γ and c1 from the simulation data. Thus if γ is a little larger in the fitting then

c1 will be correspondingly smaller and we should not be surprised if a variability of less than an

order of magnitude occurs where γ is very small and thus more prone to proportional variation.

However the second fitting, which creates the polynomials, smooths out these variations in γ and

we therefore need to be careful not to create a polynomial for c1 that has features not present in

the simulation data. The true measure of the success of the fitting is therefore not how well an

individual polynomial fits the fitted data, but how well the combinations of the polynomials in the

Eq. (S2) matches the simulations.

A further difficulty is introduced by the fact that the simulations are done at discrete frequencies

and since a quasi-BIC has an extremely high quality factor, the maximum intensity and thus the

SFG produced will depend strongly on the wavelength of the simulation point that is closest to the

BIC maximum. Computational limitations mean that we can not do simulations arbitrarily close to
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such high quality factor resonance peaks. There is therefore no single numerical measure that will

give a perfect measure of the goodness of the fit and we must therefore exercise some judgment

in choosing fitting functions. This convergence of factors forced us to ignore RH in this case and

instead have chosen a fitted function for cH1 that complements cV1 in the same way that they do in

Eq. (S4), as illustrated in Figs. S5(e) & (f).

In the vertical case we obtained RV = 0.049 [Fig. S6(f)] and fitted functions for horizontal and

vertical cases of

cH1 (θ, φ) =


(0.9 + 0.98 |θ|) gH(φ) θ ≥ 0.1◦

(100 θ2) gH(φ) θ < 0.1◦

cV1 (θ, φ) =


(−1.0003 + 0.002 |θ|) gV (φ) θ ≥ 0.1◦

(−100 θ2) gV (φ) θ < 0.1◦

where

gH(φ) = 1.4× 109 φ′
5 − 2.5× 1011 φ′

4
+ 1.6× 1013 φ′

3 − 4.0× 1014 φ′
2

+ 3.3× 1015 φ′ − 2.3× 1014

gV (φs) = 2.8× 109 φ′
5 − 4.9× 1011 φ′

4
+ 3.1× 1013 φ′

3 − 7.8× 1014 φ′
2

+ 6.5× 1015 φ′ − 6.8× 1017
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and to ensure periodicity we have

φ′ =


π − φ (mod π) φ (mod π) > π/2 ,

φ (mod π) φ (mod π) ≤ π/2 .

S5.3 BIC β, gap=175 nm

For γ we obtained RH = 0.0038 [Fig. S7(a)], RV = 0.0015 [Fig. S7(d)] and parabolic fitted

functions as expected:

γH(kx, ky) = −1.45 GHzµm2 k2x + 131 GHzµm2 k2y + 5× 10−3 GHz,

γV (kx, ky) = −0.7 GHzµm2 k2x + 135 GHzµm2 k2y + 2.7× 10−3 GHz.

For ωBIC we obtained RH = 1.1 × 10−6 [Fig. S7(b)], RV = 1.9 × 10−7 [Fig. S7(e)] and with

fitted functions of

ωHBIC(kx, ky) = 1.6× 103 GHzµm2 k2x + 1.8× 103 GHzµm2 k2y + 1.944× 105 GHz,

ωVBIC(kx, ky) = 1.6× 103 GHzµm2 k2x + 1.8× 103 GHzµm2 k2y + 1.944× 105 GHz.

(S6)

For c1 we get RH = 0.21 and RV = 2.6 [Fig. S7(f)] where we have had to use the same
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procedure as with cH1 in Sec. S5.2. The fitted functions are

cH1 (θ, φ) =


(0.96 + 0.40 |θ|) gH(φ) θ ≥ 0.1◦

(100 θ2) gH(φ) θ < 0.1◦

cV1 (θ, φ) =


(1− 5.9× 10−16 |θ|) gV (φ) θ ≥ 0.1◦

(−100 θ2) gV (φ) θ < 0.1◦

(c) (e)(a)

(d) (f)(b)

Fig S7 Lorentzian fitting to simulation results for BIC β with gap = 175 nm. The red dots are values fitted to
individual simulation results and the surface is the fitted function. (a) γH , (b) γV , (c) ωH

BIC , (d) ωV
BIC , (e) cH1 , (f) cV1 .
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where

gH(φ) = −5.7× 108 φ′
5

+ 1.2× 1011 φ′
4 − 7.0× 1012 φ′

3 − 1.0× 1014 φ′
2

+ 2.1× 1016 φ′

+ 8.4× 1016

gV (φs) = 2.6× 108 φ′
4

+ 4.0× 1011 φ′
3 − 9.4× 1013 φ′

2
+ 7.1× 1015 φ′

− 2.1× 1017

and to ensure periodicity we have

φ′ =


π − φ (mod π) φ (mod π) > π/2 ,

φ (mod π) φ (mod π) ≤ π/2 .

S6 Transverse phase-matching in k-space

The form of the dispersion for each BIC depends on the polarization of the signal and idler and

so there is some variation in the transverse phase matching condition for each polarization combi-

nation, as shown in Fig. S8. For the cases studied in this paper the variations occur in regions of

k-space with relatively low generation rates and hence it does not affect our results.

S7 Schmidt decomposition

In our case the Schmidt decomposition40 is a form of Singular Value Decomposition (SVD).

Specifically, an m × n matrix M , with m > n, can be decomposed into the three matrices U ,

Λ and V as

M = UΛV ∗,
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(b)(a)
Fig S8 The angle in k-space at which ωp(kp,⊥) = ωs(ks,⊥) + ωi(ki,⊥) for different polarizations of the signal and
idler. (a) Single BIC case, λp = 774.43 nm. (b) Two BIC case, λp = 774.22 nm. Note that the curves are hyperbolic
in this case.

where U and V are unitary (i.e., their column vectors are orthonormal) and Λ is diagonal and

positive real. In quantum mechanics it is more convenient to write

Λ =

[
λqq

]
≡
[√

λq

]
.

We can then derive the result

M = [mij] =
[
uiq
√
λq

]
V ∗

=

[∑
q

uiq
√
λqvjq

]

=
∑
q

√
λq[uiqvjq]

=
∑
q

√
λq |uq〉 ⊗ |vq〉 , (S7)

where
√
λq ∈ R and ⊗ is the outer product. To understand the importance of this result we need

to view the matrix M as a linear map from one vector space to another. Now, not every M will
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be diagonalizable if we use the same basis for both vector spaces. However in Eq. (S7) we have

shown that M is always diagonalizable if we use different bases, {|uq〉} and {|vq〉}, for the two

vector spaces.41

With SPDC we have two particles, the signal and idler photons, with Hilbert spaces of Hs and

Hi, and so the wavefunction will exist in the tensor product of these two spaces: Hs ⊗Hi. By

using the standard Jones vectors of

|H〉 =

1

0

, and |V 〉 =

0

1

,

we constructed a wavefunction of

|Ψ〉 =
√
A
(
EHH |H〉 ⊗ |H〉+ EHV |H〉 ⊗ |V 〉+ EV H |V 〉 ⊗ |H〉+ EV V |V 〉 ⊗ |V 〉

)
=
√
A

EHH EHV

EV H EV V

,

where EHV is the farfield E for the inverse process of Sum Frequency Generation (SFG) when

the signal beam has horizontal polarization and the idler beam has vertical polarization, and A is

a normalization factor. That is, we started by using the same basis, {|H〉 , |V 〉}, for both of the

Hilbert spaces (Hs and Hi).

With SVD we generated two 2× 2 matrices of

U =

[
|u1〉 |u2〉

]
and V =

[
|v1〉 |v2〉

]
,
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which we used as the bases {|u1〉 , |u2〉} for Hs and {|v1〉 , |v2〉} for Hi. By using the Schmidt

parameters
√
λ1 and

√
λ2 we can then express the wavefunction in terms of these new bases as

|Ψ〉 =
√
λ1 |u1〉 ⊗ |v1〉+

√
λ2 |u2〉 ⊗ |v2〉 . (S8)

We have therefore created a custom basis of Hs⊗Hi for the particular state |Ψ〉which will express

this state as simply as possible.

From this diagonalized form of |Ψ〉 in Eq. (S8) we can immediately see that if there is more

than one non-zero Schmidt parameter then there will be entanglement between the signal and idler.

We can also quantify the degree of entanglement with the Schmidt number40

K =
1∑
q λ

2
q

where the minimum value of 1 indicates no entanglement. The maximum value of K = n occurs

when all of the Schmidt parameters have the same value of
√
λq = 1/

√
n .

We can determine the dependence of the entanglement on the polarization of the pump by

constructing a wavefunction from one polarization of the SFG E farfield only, i.e.

|ΨH〉 =
√
A

EHH
x EHV

x

EV H
x EV V

x

,

and likewise for vertical polarization. To get the wavefunction for an arbitrary linear polarization

we apply a linear polarizer L(ψ) at angle ψ from the horizontal to the SFG E farfield and then rotate

the axes to align them with the polarizer. From this polarization we can then get an arbitrary elllip-
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ticity by rotating by an angle of χ from the Ŝ1–Ŝ2 polarization plane about an axis perpendicular

to L(ψ) via

Rn̂(χ)L(ψ)Rn̂(−χ),

where42

Rn̂(χ) = exp(−iχn̂ · ~σ)

n̂ = R(2ψ − π/2)

1

0



and

~σ = −σ3Ŝ1 + σ1Ŝ2

has been modified to account for the different orientation of the axes on the Poincaré sphere relative

to the Bloch sphere. After rotating the axes to match the new polarization the operation can be

expressed as 1 0

0 0

R(−ψ)Rn̂(−χ)

Ex
Ey

 =

Eψ,χ
0

,
which is physically equivalent to rotating the E field in the opposite sense and applying a horizontal

polarizer.
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